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ABSTRACT 

This report describes efforts to compute drag forces on unappended bod- 
ies of revolution using the Reynolds averaged Navier-Stokes (RANS) equa- 
tions. Calculations are performed for three different bodies of revolution 
with length to diameter ratios of 10, 8, and 5. Four different grids are used 
for each body with different point densities and clusterings which demon- 
strate solution dependency on the grids. The flows are computed over a 
Reynolds number range of 2.0xl06 to 25.0xl06, based on body length, and 
compared to data sets that were both tripped with sand and untripped. 

ADMINISTRATIVE INFORMATION 

This work was primarily funded by the Advanced Submarine Research and Devel- 
opment Office (NAVSEA 92R) under the 6.4 Ship Design Tools Project (Project No. 
F2033), RANS Implementation Task, with internal Work Unit Number 1-2630-707- 
50. This project was also supported in part by the Carderock Division of the Naval 
Surface Warfare Center's In-house Laboratory Independent Research Program spon- 
sored by the Office of Naval Research and administered by the Research Director, Code 
0112, under Program Element 61152N with internal Work Unit Number 1-5400-600. 
The work described in this report was performed by the Propulsor Department of the 
Hydromechanics Directorate, Carderock Division, Naval Surface Warfare Center. 

INTRODUCTION 

There has been much effort in recent years to apply Reynolds Averaged Navier- 
Stokes (RANS) flow solvers to complex flow fields. The numerical results provide ve- 
locity and pressure descriptions around the entire configuration as well as force and 
moment predictions. Additionally, the computations provide complete "pictures" of 
flow fields by which complex fluid dynamics phenomena can be investigated in more 
detail than typically available with experiments. Computations can be used to mini- 
mize the amount of experimental testing needed, or they can be done simultaneously 
with testing to get a more complete description of the flow field. A huge potential area 
for RANS calculations is the study of Reynolds number effects, particularly as they 
pertain to full scale versus model scale. 

Because RANS computations can be applied from model through to full scale there is 
a great deal of interest in determining how accurately such codes can predict changes in 
the flow field due to changes in the Reynolds number. There is nothing that inherently 
limits the RANS codes from being applied to different Reynolds numbers, but there 
are doubts as to their ability to predict full scale effects. At high Reynolds numbers 
the boundary layers are relatively thinner, based on body length, than what is found 
at model scale so grids need to be finer and more tightly packed near the wall. There 



is then the question of whether or not grids can be made fine enough at full scale, 
because of the current precision of the computers, to resolve the sublayer flow. Due 
to lack of experimental data there is even the question, by some, whether the current 
turbulence models properly model the correct physics at full scale. Of course, there are 
also comparisons at model scale that are not satisfactory. One problem is that the model 
scale data with which the results from the codes are compared is either transitional or 
needs to be tripped to stimulate transition to fully turbulent flow. In some sense full 
scale calculations may be more straight forward than model scale computations as the 
flow should be fully turbulent. 

One area where Reynolds number effects are particularly important is in the es- 
timation of drag. The drag generated by a particular configuration is a dominant 
driver of the powering requirements of that configuration. The thrust of the propul- 
sor must match the drag of the vehicle, including all appendages, for self propulsion. 
Consequently, there is a real need to predict the drag of various geometries accurately. 
Traditional flat plate friction equations are often inadequate for estimating drag due to 
pressure gradient and surface curvature effects. Various potential flow/boundary layer 
methods will generally provide a more accurate estimate, but such methods cannot be 
extended to complex fully appended geometries. Full RANS solvers are extendible to 
the configurations of interest. However, when using RANS solvers attention must be 
directed to properly gridding the entire domain as inadequate grid resolution will lead 
to poor predictions, even on bare bodies of revolution. To obtain force and moment 
data from a RANS code the computed pressure and stresses must be integrated over 
the body. Computing the correct pressure drag can be difficult on certain geometries as 
the net drag is a small value obtained by taking the difference of the two large opposing 
forces generated at the bow and stern. 

In an effort to determine how well RANS codes can predict the drag of an unap- 
pended body of revolution the current study is undertaken. Resistance and powering 
measurements are usually done in the straight ahead condition and due to the relatively 
small appendages on a submarine the drag generated by the unappended bare body is 
a large component of the total drag. However, this study is not an all encompassing 
study to determine the reliability of RANS codes for drag prediction. Rather, a series 
of calculations are performed for bodies of differing length/diameter ratios correspond- 
ing to the data obtained by Gertler x for Reynolds numbers in the range 2.0xl06 to 
25.0xl06. Four different grids are used for the calculations to give an indication of how 
drag predictions can be affected by different grids. The RANS code used for the present 
calculations is the axisymmetric version of the David Taylor Navier-Stokes (DTNS) 2> 3 

code developed at CDNSWC. 

SOLUTION TECHNIQUE 

The steady incompressible Reynolds averaged Navier-Stokes equations are solved 
using the axisymmetric version of the DTNS code. The DTNS codes were developed 



by Gorski2,3 and have since been applied to a variety of submarine 4>5 (including 
body forces for propulsion modeling 6) and ship 7>8 configurations including transom 
sterns9. Other work with the DTNS codes was aimed at extending their applicability 
by introducing more physics with the inclusion of stratification 10. In addition, because 
of their accuracy and applicability to complex configurations, the DTNS codes have 
been used as a turbulence modeling testbed by Gorski n>12 and at the NASA Lewis 
Research Center by Steffan 13>14. A brief description of the DTNS flow solver will now 
be given. 

The DTNS codes use the pseudo-compressibility approach where an artificial time 
term is added to the continuity equation and then all of the equations are marched 
in time. The solver is based on a cell centered finite volume formulation where the 
dependent variables are stored at cell centers and the "fluxes" are computed across 
the cell faces. The Navier-Stokes equations contain first derivative convective terms 
and second derivative viscous terms. The viscous terms are numerically well-behaved 
diffusion terms and are discretized using standard central differences. The convective 
terms are treated using Roe's 15 approximate Riemann solver. A Jacobian matrix is 
formed for each of the convective flux terms for which eigenvectors and eigenvalues 
are obtained. By differencing these flux terms based on the sign of their eigenvalues 
stability can be achieved without any artificial dissipation terms being added to the 
equations. For the present calculations a third-order upwind biased discretization is 
used for the convective terms. More details of how this discretization method is applied 
to the Navier-Stokes equations for incompressible flows were presented by Gorski 2. 

The equations are solved in an implicit coupled manner using a first-order accurate 
upwind scheme for the convective terms and standard central differences for the viscous 
terms. The implicit treatment of the viscous terms adds more numerical stability to 
the solution. This creates a diagonally dominant system which requires the inversion 
of block tri-diagonal matrices. The implicit side of the equations are only first order 
accurate because of the treatment for the convective terms, but the final converged 
solution has the high order accuracy of the explicit part of the equations. Additionally, 
a spatially varying time step based on the local eigenvalues is used for faster conver- 
gence rates. However, discontinuities in the grid and extremely tight clusterings can 
significantly impact the stability and convergence rate of any numerical method, this 
one included. 

For the present calculations the algebraic eddy viscosity model of Baldwin and 
Lomax 16 is used. All of the grids used are O-type grids which wrap around the leading 
and trailing edges of the bodies. Consequently, no treatment is included for the wake 
region downstream of the bodies of revolution. 

NUMERICAL RESULTS 

The calculations correspond to a series of mathematically related streamlined bodies 
of revolution, designated as Series 58, which are derived from a sixth degree polynomial. 



A number of these bodies with varying length to diameter ratios and various leading 
and trailing edge radii were tested by Gertler 1 specifically for resistance purposes. The 
models were all 9 feet (2.74 m) long and tested in the David Taylor Model Basin. For 
towing purposes two struts were attached to each model. Due to interference between 
the models and the towing struts the measured resistance is higher than on the bare 
bodies themselves. Consequently, a pair of dummy struts, similar to the towing struts, 
were also constructed and mounted at ninety degrees to the original struts. Tests were 
conducted with and without the dummy struts with the difference giving an estimate 
of strut-interference effects. This strut-interference value can then be subtracted from 
the resistance obtained for the body of revolution with towing struts to obtain an 
estimate of the resistance of the body of revolution alone. Different values of strut- 
interference coefficient are obtained for the different models, but it is assumed the value 
for each individual model is independent of Reynolds number. The experimental data 
as presented here has the strut-interference coefficient removed for comparison with 
the bare body calculations. The experimental measurements were conducted both with 
smooth models and with a 1/2 inch (1.27 cm) sand strip placed at X/L = 0.05 to better 
stimulate transition to turbulence. The models were towed at a depth of 9 feet (2.74 
m) which was thought to minimize free surface effects. 

Calculations are presented for a range of Reynolds numbers ranging from 2.0xl06 

to 25.0xl06, based on body length, which covers the range over which the experiments 
were performed. No attempt is made to model transition in the calculations and all 
computations are done as if the bodies are fully turbulent. The models computed 
are 4159, 4158, and 4155 corresponding to length to diameter ratios of 10, 8, and 5, 
respectively. 

Model 4159 

Model 4159 has a length to diameter ratio of 10 with a wetted surface area of 19.64 
square feet (1.82 m2). Calculations are performed on four different grids. Two coarse 
grids, designated CO and Cl, have 81 points along the body and 41 points going from the 
body out to the outer boundary of the computational domain which extends to about 
five body lengths from the body. Grid CO, with details of the grid near the leading and 
trailing edges, is shown in Fig. 1. Grid Cl has the same number of points and the same 
distribution along the body. However, the Cl grid is more tightly clustered near the 
wall so that at the highest Reynolds number computed the centroid of the first point 
off of the wall is at y+ « 1. This tight clustering will also put more grid points in the 
boundary layer. Two fine grids are also used, designated F0 and Fl. Grid F0, with 
details of the grid near the leading and trailing edges, is shown in Fig. 2. These two 
fine grids have 161 points along the body and 81 points going from the body out to the 
outer boundary of the computational domain. As with the coarse grids F0 and Fl have 
the same point distribution along the body. Grid Fl is more tightly clustered normal 
to the body with the first centroid off of the wall at y+ « 1 for the highest Reynolds 



Model 4159 Grid 

0.7S   - 

CC  0.50 

0.25 

0.25 0.5 0.75 
X/L 

(a) Pull grid. 

Model 4159 Grid 

1 155 

E 

0.05 

(b) Detail around the leading edge. 

Model 4159 Grid 

CE 

(c) Detail around the trailing edge. 

Fig. 1. Coarse grid for Model 4159. 



Model 4159 Grid 

1.00 1B|||| WMMffflf///Mj 
Wtttttttf/Mjj^^^ 0.75 ^^M^ww^uulm mwMuimTrM^y^& 

^^^mwoOT^liVm 
=i 

^^^^ -WuMlffllmfm/fflmM^ 
^^^^MWW^\^^\\\\\ll           i Wmtwmr/MMßßM^ ^^^wSMwv\\^\\\m^ 

0.25 

-0.25                 0                  0.25 0.5 0.75                  1                  1.25 
X/L 

(a) Full grid. 

Model 4159 Grid 

(b) Detail around the leading edge. 

Model 4159 Grid 

(c) Detail around the trailing edge. 
Fig. 2. Fine grid for Model 4159. 



1.5 

>«   1 

0 - 

  Y* on grid CO, ^=2X10* 
  Y+ongridC1,R,=2X10' 
  Y*ongridF0,R.=2X108 

  Y* on grid F1, R.=2 X10* 

J I I L 
0.25 

111111 

0.5 
X/L 

i   ' 
0.75 

Fig. 3. Y+ for Model 4159 at a Reynolds number of 2.0xl06 

number computed. All four grids are generated algebraically with surface normalcy 
imposed close to the body, particularly for the coarse grids CO and Cl. Grids CO and 
Cl are generated independently from the FO and Fl grids and are not obtained by 
removing every other point from them. 

An indication of the differences in clustering between the grids can be obtained by 
observing the distance of the first centroid off of the wall in wall coordinates. Shown 
in Fig. 3 is the y+ value of the first centroid off of the wall for the four grids at a 
Reynolds number of 2.0xl06. All are near y+ of one or less, which should be more than 
adequate for skin friction calculations, with Cl and Fl very tightly clustered and nearly 
indistinguishable. Law of the wall plots for CO and Cl show good comparison with the 
equation of Spalding17 at two locations near the midbody (Fig. 4). Grids FO and Fl, 
being finer than CO and Cl, reproduce Spalding's equation just as well. Spalding's17 

formula, which uses the same constants as the Clauser fit, is a formula for the law of 
the wall which smoothly transitions from the inner layer, where the linear law applies, 
to the outer layer where the law of the wall equation applies. 

At the higher Reynolds number of 25x106 the first centroid off of the wall for grids CO 
and FO is fairly far out in the viscous sublayer (Fig. 5) near y+ values of approximately 
7 and 4, respectively. The grids are not changed for the different Reynolds numbers. 
This becomes detrimental to the law of the wall prediction as shown in Fig. 6. Grids Cl 
and Fl still have the first centroid around y+ of one and still provide a good comparison 
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with the law of the wall as shown in Fig.   7. 
The predicted resistance coefficient, Ct, for a range of Reynolds numbers on all four 

grids is show in Fig. 8 along with the experimental data of Gertler1. Here the resistance 
coefficient is given by 

_  Resistance 
* =    l/2pSU2 

where p is the density, S is the wetted surface area, and U is the free stream velocity. A 
constant value of 0.00042 has been subtracted from the data as originally published by 
Gertler to account for strut-interference. Two curves are included for the experimental 
data; one in which sand has been added to stimulate transition to turbulence and one 
where the body is smooth. The data with sand has a higher resistance coefficient than 
the smooth model for all Reynolds numbers tested. This indicates that there is an 
added resistance due to the sand even at the higher Reynolds numbers where it is 
not necessary to trip the flow for transition. Gertler has discussed this and devised a 
resistance coefficient due to the sand for the interested reader. The calculations on all 
four grids tend to agree with the values for the model with sand at the low Reynolds 
numbers. At the higher Reynolds numbers the two grids with the finer clustering, Cl 
and Fl, tend to agree with the two data curves; Cl the data without sand and Fl the 
data with sand. Both Fl and Cl predictions remain parallel to each other and represent 
the trends of the data quite well. The two grids which are not as finely clustered, CO 
and F0, tend to predict high values of resistance at the higher Reynolds numbers. It 
can also be seen that these predictions tend to rise with increasing Reynolds number 
and are not parallel to the experimental data. These results indicate that predicting 
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the correct resistance may be more a function of having adequate resolution of the 
boundary layer and first point off of the wall than a function of the actual number of 
grid points. 

The resistance is obtained by integrating the pressure and viscous stresses over the 
hull. Intuitively, one would think that the frictional resistance would be controlled 
by the first point off of the wall and boundary layer resolution. A comparison of the 
frictional resistance coefficient, CF, for the four grids is show in Fig. 9 along with the 
values obtained from the Schoenherr formula 

0.242 
= logw(Re.CF). 

The RANS solution on grid Fl closely matches the Schoenherr formula and the solution 
on grid Cl is roughly parallel to it. One cannot say that Fl is better than Cl because 
of this since the Schoenherr formula is a generic formula and only has Reynolds number 
dependence and no body dependence. However, one can see that predictions with both 
grids have the same trend. Grids CO and FO do fine at the low Reynolds numbers, 
but their values rise at the higher Reynolds numbers repeating the trend seen for the 
total resistance coefficient. If we look at local skin friction for these four grids we see 
that at the low Reynolds number of 2.0xl06 much the same skin friction is obtained 
(Fig. 10). However, the small differences seen lead to noticeable differences when they 
are integrated for the total resistance. Small differences in grid normalcy and spacing 
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Fig. 10. Skin friction comparisons for Model 4159. 

lead to these small differences in the local skin friction. The use of the Baldwin- 
Lomax turbulence model for the present computations may have highlighted these grid 
differences somewhat since the Baldwin-Lomax model relies on a computed length scale 
which can be highly grid dependent. At the low Reynolds numbers grids FO and Fl give 
nearly identical results for skin friction while grids CO and Cl produce slightly lower 
values. For the higher Reynolds numbers the differences in local skin friction become 
more apparent. Here grids CO and FO tend to predict higher values than grids Cl and 
Fl which leads to the overprediction of total and frictional resistance on grids CO and 
FO. 

The residual resistance coefficient, Cr is obtained from 

Cr = Ct — Cp 

and is basically the resistance due to pressure forces on the body. The residual resistance 
for the four grids is shown in Fig. 11 along with the experimental data of Gertler. For 
the experimental data the residual resistance has been obtained by subtracting the 
frictional resistance obtained with the Schoenherr formula from the total resistance. 
Again the experimental data with and without sand are shown. It can be seen that below 
a Reynolds number of approximately l.OxlO7 the data without sand is negative. This 
indicates laminar flow over part of the body since the residual resistance is obtained by 
subtracting the turbulent frictional resistance from the total resistance. It is postulated 
by Gertler that the small hump in the experimental curves around a Reynolds number of 
l.OxlO7 is due to free surface effects which decrease at the higher Reynolds numbers. The 
computed values are all close to each other which is not surprising since the computed 
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pressure distributions are nearly identical between the four grids as shown in Fig. 12. 
The computed Cr tends toward a constant value at the higher Reynolds numbers which 
is the expected behavior. It can be seen that there is some difference between the C 
and F grids with the C grids giving slightly higher Cr values than the F grids. It would 
appear from this that the number of points wrapping around the body does have some 
impact on the residual resistance prediction. However, considering the large difference 
in leading and trailing edge resolution of the grids the predicted difference in Cr does 
not seem to be significant for Model 4159 predictions. 

Model 4158 

Model 4158 has a length to diameter ratio of 8 with a wetted surface area of 24.58 
square feet (2.28 m2). Again calculations are performed on four different grids with 
much the same point distributions as for model 4159. The coarse, CO, and fine, FO, grids 
are shown in Figs. 13 and 14. Law of the wall and y+ plots are very nearly identical 
to those shown earlier for Model 4159 so are not repeated here. The same trends as 
Model 4159 between the predictions on the four grids and the experimental data are 
seen in the comparisons of total and frictional resistance, Figs. 15 and 16, respectively. 

Here a strut-interference coefficient of 0.00040 has been subtracted from the data of 
Gertler. The total resistance predicted with grids Cl and Fl are roughly parallel to 
each other and very nearly straddle the experimental data. The resistance predicted 
with grids CO and FO tends to rise with Reynolds number apparently due to insufficient 
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Fig. 12. Surface pressure comparison for Model 4159. 

resolution near the wall. The predicted local skin friction at the low Reynolds numbers 
is similar between the four grids (Fig. 17), but different enough to provide different 
integrated values of resistance. At the higher Reynolds numbers we again see grids 
CO and F0 predicting higher levels of local skin friction than that computed on grids 
Cl and Fl. It is important to note that differences in local skin friction might often 
be considered small when comparing computations and experiments, but these small 
differences accumulate when one integrates over the entire body for a force or moment 
prediction. For the residual resistance (Fig. 18) the experimental data again suggests a 
transition region for the case without the sand. The predicted values again asymptote to 
a constant value at higher Reynolds numbers, but here there is slightly more distinction 
between the values obtained on the coarse, or C grids, and those obtained on the F 
grids. Again there is little discernable difference between the surface pressure plots 
(Fig. 19). 

Model 4155 

Model 4155 has a length to diameter ratio of 5 with a wetted surface area of 39.75 
square feet (3.69 m2). Consequently it is much blunter than the previous geometries. 
Again calculations are performed on four different grids with much the same point 
distributions as for models 4159 and 4158. The coarse, CO, and fine, FO, grids are shown 
in Figs. 20 and 21. Despite the blunter nose of this geometry the law of the wall and 
y+ plots are much the same as those shown earlier for Model 4159 so are not repeated 
here. The same trends between the predictions with the four grids and the experimental 
data are also seen in the comparisons of total and frictional resistance, Figs. 22 and 23, 
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Fig. 13. Coarse grid for Model 4158. 
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Fig. 14. Fine grid for Model 4158. 
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Fig. 15. Ct for Model 4158. 
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Fig. 16. CF for Model 4158. 
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Fig. 17. Skin friction comparison for Model 4158. 
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Fig. 18. Cr for Model 4158. 
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Fig. 19. Surface pressure comparison for Model 4158. 

respectively. Here a strut-interference coefficient of 0.00035 has been subtracted from 
the experimental data of Gertler. Again, the total resistance predicted with grids Cl 
and Fl are roughly parallel to each other and match the trends of the experimental data 
well. The Fl prediction is consistently higher than the Cl prediction as seen earlier. 
At the low Reynolds numbers the experimental data with the sand is always predicted, 
but at the higher Reynolds numbers the predictions are- somewhat between the two sets 
of experimental data. The resistance predicted with grids CO and FO tend to rise with 
Reynolds number apparently due to insufficient resolution right near the wall. It is 
interesting to note that the frictional resistance, Fig. 23, predicted with the Schoenherr 
formula is once again near the values predicted with the RANS code. Remember the 
Schoenherr curve is the same for all three models. There are some differences between 
the computed values and Schoenherr values for the different models, which can be seen 
from the different figures, but overall the Schoenherr formula seems to give a reasonably 
good estimate of the frictional resistance for this series of models as compared to RANS 
calculations. The local skin friction at the low Reynolds number of 2.0xl06 has more 
differences between the four grids than seen earlier (Fig. 24). At the low Reynolds 
number grids Fl and FO give nearly identical results. The differences between the C 
and F grids is believed to be due to surface normalcy and other detailed differences 
between the grids. At the high Reynolds number of 25.0xl06 grids CO and FO again 
predict higher levels of local skin friction than that computed on grids Cl and Fl. For 
the residual resistance, Fig. 25, the experimental data again suggests a transition region 
without the sand. There is also a much larger hump region in the experimental data 
than seen previously which is thought to be due to free surface effects. The predicted 
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Fig. 20. Coarse grid for Model 4155. 
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Fig. 21. Fine grid for Model 4155. 
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Fig. 22. Ct for Model 4155. 
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Fig. 23. CF for Model 4155. 
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Fig. 24. Skin friction comparison for Model 4155. 
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Fig. 25. Cr for Model 4155. 
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Fig. 26. Surface pressure comparison for Model 4155. 

values are again asymptoting to a constant value at higher Reynolds numbers, but 
here there is more spread in the calculations than seen with the thinner bodies. Again 
there is a difference between the coarse and fine grid predictions indicating that at least 
for blunter bodies the number of points used to resolve the geometry does affect the 
residual/pressure resistance. It is interesting to note that the various grids seem to 
each be asymptoting to their own individual value of Cr at high Reynolds numbers. 
Unlike the previous surface pressure predictions, for this model there are some small 
differences near the trailing edge as shown in Fig. 26. 

CONCLUSIONS 

As already mentioned RANS computations are being more routinely carried out 
for fully appended ship and submarine configurations. These computations are being 
used to provide force and moment estimates. The intent of this work is to determine 
how reliably such RANS computations can provide drag estimates for unappended 
bodies of revolution. Calculations are demonstrated for three different bodies with 
length/diameter ratios of 10, 8, and 5 over a range of Reynolds numbers from 2.0xl06 

to 25.0xl06, based on body length. Grid resolutions are typical of what is currently 
used to grid the hull of a fully appended ship or submarine configuration. In general as 
long as the first point off of the wall is sufficiently close the computations agree with the 
total resistance, as experimentally measured by Gertler1, quite well. At low Reynolds 
numbers the experimental flow was transitional and the computations agree with the 
model data with sand present. At higher Reynolds numbers the predictions on grids 
Cl and Fl, whose first point off of the wall is always at y+ « 1 or less, are within 
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the differences seen in the experimental data between the cases with and without sand 
present on the model. If the first point off of the wall is too far away, as for grids CO and 
FO, the predicted resistance tends to be too high. This is regardless of the number of 
grid points used for the calculation. It seems the actual number of points on or normal 
to the body is not as significant as the distance of the first point off of the wall for these 
calculations. 

The pressure or residual resistance is computed quite well with all of the grids with 
the calculations generally falling between the experimental data with and without sand 
present at the higher Reynolds numbers. Again at the lower Reynolds numbers the 
calculations tended toward the experimental data with sand present. The values for CT 

tend to asymptote to a constant value at higher Reynolds numbers. For the thinner 
bodies, with length to diameter ratios of 10 and 8, the number of points on the body 
does not significantly affect the solution. However, there is more of an affect for the 
bluntest body (length to diameter ratio of 5) with the finer grids providing a lower value 
than the coarser grids. The residual resistance seems to depend more on the number 
of points, or resolution of the body, than the distance of the first point off of the wall. 

From these calculations it would definitely seem that RANS calculations can predict 
the correct resistance trends for axisymmetric bare bodies over a range of Reynolds 
numbers as long as the grid is sufficiently fine. Here the grids are not changed for the 
different Reynolds number calculations. The tightly clustered grids, Cl and Fl, are 
probably too tightly clustered for low Reynolds number cases and the less clustered 
grids, CO and FO, are not clustered enough for the high Reynolds number cases. From 
these calculations it appears that the best approach, for maintaining accuracy, is to 
regrid for different Reynolds numbers maintaining the first grid point off of the wall 
near a value of y+ « 1. This value can be different for various RANS codes as different 
codes may have other accuracies and near wall treatments which would affect this 
value. However, a comparison of how well the law of the wall and viscous sublayer 
region is reproduced can give an indication of how much reliance can be put on a given 
calculation. 
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